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Abstract. The formula which relates the scaled interface width to the anisotropic interface 
tension is generalised for an arbitrary orientation of the interface in two dimensions. The 
relationship between the scaled interface width and the curvature of the equilibrium crystal 
shape is also generalised. 

1. Introduction 

It is well known that the one-dimensional interfaces for two-dimensional systems are 
rough and delocalised at any temperature T >  0, as has been proved (Gallavotti 1972, 
Abraham and Reed 1974, Higuchi 1979, Aizenman 1980) for the two-dimensional 
square-lattice Ising system. The interface delocalisation width is of the order of N112, 
with N being the linear size of the system and then suitably scaled quantities (e.g. 
scaled interface profile and scaled interface width) have been introduced and analysed. 
In particular, the exact scaled interface profile in a two-dimensional square-lattice 
Ising system has been calculated (Abraham and Reed 1976, 1977, Abraham 1981) to 
be the integral of the Gaussian distribution whose variance, the scaled interface width, 
U, is finite when T < T,, the critical temperature of the Ising model, and diverges like 
IT- TCl-l/* as T +  T,. 

Recently, much attention has been paid to the anisotropy of interface properties. 
As to the anisotropy of U, the exact calculation is limited to the special case 8 = 0, 
where 8 is the mean tilt angle of the interface relative to the crystal axis. For a 
thermodynamical treatment, there exists an argument by Fisher er a1 (1982, hereafter 
referred to as FFW) which showed that, by taking into account the correct anisotropy 
of the interface tension, the modified capillary wave theory (Buff er a1 1965, Weeks 
1977) reproduces the exact results on the Ising model for U. We note here that the 
results of FFW are also limited to the case 8 = 0 and that the generalisation for general 
8 is not attained by the original argument of FFW itself, since it utilises the special 
case of a 8 = 0 interface. 

The purpose of this paper is to present the generalised formula which relates the 
anisotropy of the interface tension to that of the scaled interface width. In 0 2, we 
derive the formula by a thermodynamical argument similar to FFW but which is slightly 
different from FFW in that we use the Legendre-transformed interface tension introduced 
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by Andreev (1982). In 9 3, we perform explicit calculations on the SOS model to verify 
the formula from a microscopic point of view. In Q 4, the formula is applied to the 
Ising model. In Q 5 ,  we will show that the curvature of the equilibrium crystal shape 
is directly connected to the scaled interface width. The last section is devoted to a 
summary and discussion. 

2. Thermodynamical argument 

We first review the argument by FFW. We consider an interface, the reference interface, 
which extends along the crystal axis. We denote its length (i.e. the distance between 
the starting point and the endpoint) by L. To cause a tilt to this interface by fixing 
the starting point and moving its endpoint in the direction normal to the reference 
interface, excess free energy A F  is required. Denoting the tilt angle by 8, we can 
calculate A F  as 

AF = y(e)(L/cos e )  - Y ( O ) L .  (1) 
In the above, y ( 0 )  is the interface tension (the interface free energy per unit length) 
and L/cos 8 is the length of the inclined interface. For small 8, we can expand A F  
in 8 to have 

AF/L=(y(0)+iy“(0)02+.  . . ) / (1- i02+.  . . ) - y ( O )  

= ;e2( ~ ( o )  + ~ ” ( 0 ) ) .  (2) 

The quantity y(O)+y”(O) is sometimes called the stiffness of the interface. In the 
above, we do not have the @-linear term y ’ (0 )  6 because of the speciality of the 6 = 0 
interface, y ‘ (0 )  = 0, which comes from the crystal symmetry and from the fact that the 
one-dimensional interface is rough at any finite temperature. FFW pointed out that, 
in the prediction of the modified capillary wave theory (Buff et a1 1965, Weeks 1977) 
for the interface width w, 

w-2= P y ( O ) / L  ( 3 )  

with p being the inverse temperature l / (kBT) ,  the interface tension y (0 )  should be 
substituted by the ‘effective’ interface tension y ( 0 )  + y”(0) to give 

w-’=p(y (O)+y”(o ) ) /L .  (4) 

4 0 )  = P ( Y ( O ) +  ?’YO)) (5) 

In terms of the scaled interface width ( ~ ( 0 )  = w/L”’, we have 

which agrees with the exact calculation in the Ising model (Abraham and Reed 1974, 
1977, Abraham 1981). 

It is quite natural to suppose that relation (5) admits a simple generalisation for a 
general inclination angle 8 of the reference interface, namely 

a-*@) = p(?(e)+a2?(e)/aez). ( 6 )  

However, since the original derivation of FFW utilises the fact y ’ (0 )  = 0, there must be 
some modification of the derivation of the formula (6) for general 8 where y’( 8) # 0 
in general. For this purpose, we present an argument similar to, but slightly different 
from, that of FFW, which is suitable for the derivation of (6) for e # 0. 



Anisotropic interface tension 2815 

To treat the macroscopically inclined interface and its fluctuation, we introduce 
the ‘generalised free energy’ F (  p ,  r ] )  defined by 

where we have p =tan 8, ?( p )  = y(  0 )  and the parameter r] is the ‘field’ conjugate to 
the variable p .  Note that, by introducing F (  p,  r ] ) ,  we have made the Legendre transfor- 
mation of the variable p + r].  We regard p =tan 8 as a fluctuating variable and we 
determine the mean inclination angle from the condition d F (  p ,  r ] ) / d p  = 0, the minimisa- 
tion condition of F ( p ,  77) with respect to p ,  which amounts to 

df(P)/dP = 71. (8) 

The above condition gives the equilibrium value of p and 8, p = p * (  r ] )  and t9 = e*( r ] ) .  
We want to consider the fluctuation of the interface around its equilibrium. We put 
Ap = p - p*(  r ] )  and expand F (  p ,  r ] )  around p = p * (  r ] )  to obtain 

F(P, 17) = L?(r])+~Ld2f/~PZl,=,*(AP)’ 

?(T I  = F [ P * ( r ] ) ,  r]I/L. (9b) 

(9a 1 

The quantity?( r ] )  is the Andreev free energy (Andreev 1982). For notational simplicity 
we write p*(  r ] )  and e*( r ] )  as p and 6 in the following. The standard thermodynamical 
fluctuation theory gives 

((AP)’) = ( 1 / P 1 ( Q 2 f (  P ) / d P 2 ) - ’ .  

((Ap)*) = ((Ae)’)/cos4 8 (1 l a )  

a’f( p ) / a p 2  = cos3 e( y (  e) + yy e)). (1lb)  

The deviation of the endpoint of the interface, normal to the reference inclined interface, 
Ah, is related to AB as 

(10) 

Remembering p =tan 8, we have 

Ah = LAO (12) 

with t = L/cos 8. Introducing the scaled variable y = Ah/?” and defining the scaled 
interface width a( 0 )  by a’( e )  = ( y 2 ) ,  we obtain formula ( 6 ) .  

3. SOS calculations 

To amplify the thermodynamical argument presented in the previous section, we 
perform explicit calculations on an simplified interface model, the so-called SOS 

(solid-on-solid) model (Burton et a1 1951). As was pointed out by Huse et al (1985), 
the SOS description of the interface wandering is correct when we discuss the large 
length scale properties of the interface. 
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In the SOS model, the ‘overhang’ configurations are forbidden. The effect of the 
bubbles in the bulk is also excluded. Then the interface configuration is represented 
by a set of heights {hi};, as shown in figure 1 (we take h,=0). The Hamiltonian HN 
is defined by 

We define the ‘constrained partition function’ 2, ( h )  by fixing hN = h and summing 
over other variables { h i ) :  

h, = --CO h,-,=-m 

The unconstrained partition function ZN is just Er=-, ZN(h) .  We put hN = N tan& 
where 6 is the mean inclination angle of the interface. The interface tension y(  6) is 
related to Z,(h) as 

Z,(Ntan 6)=exp - -py (6 ) ) .  N ( cos6 

Strictly speaking, the above y (  6) is N dependent. However, the correction to its N + 03 

limit is 0(1/N) and is neglected in the following arguments. 
We introduce a probability distribution function p ( n ,  h )  defined by 

p ( n ,  h )  = (ahn,h) 

where S i , j  stands for the Kronecker delta. As can easily be verified, we have 

~ ( n ,  h )  = Z n ( h ) / Z n *  (17) 

The function p ( n ,  h )  is the ‘transition probability’ of the interface position from (0,O) 

Height 

2 
1 
0 

-1 
- 2  

0 1 2 3  I N 

Figure 1. An interface configuration in the SOS (solid-on-solid) model. The site of each 
column is denoted by i and the column height by hi. We set h, = 0. The mean inclination 
angle 8 is defined by tan 0 = h N /  N.  
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to ( n ,  h ) .  Then the probability of finding the interface position at ( n ,  h )  in the inclined 
interface, which we denote by P N ( n ,  h, e), is calculated as the probability of taking 
the path (O,O)+ ( n ,  h ) +  (N, Ntan e )  relative to that of taking the path (O,O)+ 
(N, N tan e): 

PN(  n, h, 0 )  = p (  n, h ) p (  N - n, N tan 8 - h ) / p (  N, N tan 0 )  (18a) 

=Z,,(h)ZN-,(Ntan e -h ) /ZN(Ntan  6 )  (18b) 

which comes from the Markovian nature of the interface wandering in the SOS model. 
We want to calculate the deviation probability of the interface position from the 
reference mean inclined interface. For this purpose, we put h = n tan 0 + A h  in equation 
(18) and define a function pN(  n, Ah, e )  as 

p N ( n ,  Ah, e )  = P N ( n ,  n tan @ + A h ,  e ) .  (19) 

We are interested in the asymptotic behajiour in the N + CO limit. As can be verified 
by a direct calculation, the function P N ( n ,  Ah, e )  has a well defined non-trivial 
(Gaussian) form with the scaled variables 

y = A h /  N1I2 

x = n / N .  

We further define a variable s which measures the deviation of interface position 
normal to the mean interface, scaled by (N/cos  with Nlcos 6 being the length 
of the inclined interface: 

s = y COS e  COS^/^ e. (21) 

From equation (18), after some calculations, we have 

where, taking into account the relation (15), a ( 6 )  is found to be related to y ( 0 )  as 

which is the desired formula. 

4. Application to the king model 

In the preceding sections we have established the formula ( 6 )  for general interface 
orientation. In this section, we apply the formula to the Ising model to see the actual 
behaviour of a( e). 

The exact expression of y(  e )  for the square-lattice Ising model with nearest-neigh- 
bour coupling constant K is known (Abraham and Reed 1977, Rottman and Wortis 
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1981, Avron et a1 1982) to be 

p y (  8) = q1 COS 8 + 7)’ sin 8 

q1 =sinh-’[cos O(a(8) ) l  

q2 = sinh-’[sin 8(a(  e))] 
a ( 6) = M[ 1 - (2/M)’] ‘I2{ 1 + [sin’ 28 + (2/M)’ cos2 26]1’2}-1/2 

M =cosh2 2Klsinh 2K. 

After some algebra, we have 

a-’(,) = / 3 (y (8 )+a2y (6 ) /a6 ’ )  

cos 6 sinh ql  +sin 8 sinh q2 
sin2 8 cosh q, + cos’ 8 cosh q2 

sin2 6(  1 + cos’ 8a2( 13) ) ”~  + cos2 i3( 1 +sin’ 6aZ( 

- - 

- .(e) - 

In particular, for 6 = 0, we have 

a-2(o) = a ( 0 )  

= sinh 2( K - K * )  

where K* is the dual coupling constant given by K *  = -f log tanh K .  As was pointed 
out by FFW, equation (26) agrees with what has been calculated exactly by Abraham 
and Reed (1976) using the transfer matrix method. The full form of a(8)  given by 
(25) is shown in figure 2 for some temperatures. It is clear that, for 8 not corresponding 
to the crystal axis, a( 8) does not converge to zero even in the T + 0 limit. This ‘residual 

I C  I 

Id I 

Figure 2. Polar graphs of U( 0)  for the two-dimensional square-lattice Ising model calculated 
from (25). The temperatures are chosen as (a )  T /  T, = 0.1, ( b )  T /  T, = 0.3, ( c )  T /  T, = 0.5, 
( d )  T / T c = 0 . 7 ,  ( e )  T / T c = 0 . 9 .  
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width’ comes from the degeneracy of the ground state configurations of the interface. 
From the T + 0 limit of the expression (25), we have 

a’( e) = (sin el lcos 81 (Isin 81 + lcos el) ( T + O )  (27) 

which has a strong anisotropy. Note that the expression (27) is obtained also from 
the T + 0 limit of a’( e) in the SOS model since the SOS approximation is exact at the 
T + 0 limit. We can also derive the expression (27) by directly counting the degeneracy 
of the ground state configurations of the interface. As T + T,, a’( e) diverges for any 
6 with the same amplitude of the divergence, reflecting the isotropy of the system in 
the critical region. 

5. Equilibrium shape 

In this section, as an application of the formula (6), we present a relation between the 
scaled interface width and the equilibrium shape. The essential point is the fact that 
the combination y (  e)  + d2y(  8)/a02 is a constant multiple of the radius of curvature of 
the equilibrium crystal shape in two dimensions (Wulff 1901, von Laue 1944, Burton 
er a2 1951), whose brief derivation, based on the Andreev formulation, is presented 
in the following. 

We draw the equilibrium crystal shape in the xz plane. Andreev (1982) showed 
that it is determined from the Legendre-transformed free energy T(7) defined in (9) 
via the equation 

AZ =f(  - AX) (28) 

where the parameter A is the Lagrange multiplier associated with the volume-fixing 
constraint. Thus the curvature K is calculated as 

K =--2”/[1+(Z’)2]3’2 

= - A ( ~ ’ J ( V ) / ~ T ~ ) / [ ~  +(aT(17)/a17)213/2 (29) 

with 7 = -Ax. Noting the relations 

and rewriting the expressions in terms of the gradient angle 8 defined by p =tan 0, we 
have 

K (  e) = A (  y (  e ) +  ’)’’I( e ) ) - ’  (31) 

where we have used the relation (1 1). 

crystal shape is related to the scaled interface width a ( e )  as 
By combining the formulae (6) and (31), we see that the curvature K ( 0 )  of the 

K (  e)  = A@’( e). (32) 

A physically important conclusion from (32) is that, since (r2(8)>0 for any 6 for 
0 < T < T, , the equilibrium shape is always convex and cannot be ‘dendritic’. 
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6. Summary and discussion 

We have presented a generalised formula which relates the scaled interface width U( 0)  
to the anisotropic interface tension for arbitrary interface orientation. We have derived 
the results both from a thermodynamical argument and from microscopic calculations 
on the SOS model. We have applied the formula to the Ising model to calculate the 
explicit form of a(0). The formula is also applied to obtain a relation between a(@) 
and the equilibrium shape. 

It seems plausible that formulae similar to (6) and (32) hold for a two-dimensional 
interface in three dimensions. In fact the interface stiffness can be defined for three 
or more dimensions in the matrix form. The problem is how to relate the stiffness to 
the interface profile, to which the arguments presented in this paper cannot be applied 
directly. If we perform the long-wavelength approximation (Weeks 1977, Bedeaux 
and Weeks 1985) on the problem and adopt the resulting Gaussian Hamiltonian to 
calculate interfacial quantities, we can derive the generalisation of formulae (6) and 
(32) for higher space dimensions. Details will be published elsewhere. 
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